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Abstract

This study examines an e�cient policy for accelerating research and development (R&D)

in technology developing firms. To find an e�cient R&D subsidy allocation, I estimate the

degree of knowledge spillovers through collaborative research networks among firms. I ad-

dress the interdependence of the R&D e↵orts and the choice of collaborators by constructing

a two-stage model in which firms first decide their R&D investments and then choose collab-

orators in the second stage. Structural estimation provides the estimates of the magnitudes

of spillover e↵ects and determinants of its collaboration partners. I also find that when the

network structure is treated exogenously, the spillover e↵ects are estimated to be smaller

between 8% and 18% than when endogenous network changes are considered. Counterfac-

tual analysis reveals that subsidy allocation targeting firms currently involved in a lot of

collaborations is more e�cient, both in terms of promoting R&D investment and intense

collaboration.

1 Introduction

Innovation is often the result of combining various types of knowledge. When inventors inter-

act, knowledge spills over and plays a crucial role in developing new technologies (Kerr, 2008;

Ductor et al., 2014; Akcigit et al., 2018; Zacchia, 2019; Anderson and Richards-Shubik, 2022).

These spillovers are sources of externality, which implies that each firm’s research and devel-

opment (R&D) investment should be smaller than the social optimum. To promote innovation

and achieve social optima, policies that provide additional incentives for R&D investment and

encourage inventors to interact should be considered. Although both policies are certain to be

e↵ective, it is challenging to find a quantitatively optimal policy because of the interdependence
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of R&D investment decisions and interactions between inventors. The current literature usually

assumes that R&D spending is exogenous and examines the mechanism of collaboration, or vice

versa, but does not endogenize both. However, when R&D collaboration relationships a↵ect

firms’ R&D investments, they also determine with whom they should collaborate. Without a

model that addresses this interdependence, policy e↵ects cannot be evaluated correctly.

This study constructs a model that considers endogenous collaboration network formation

when firms determine their R&D investment in a competitive market and estimate it struc-

turally. The model involves a two-stage game in which firms first choose their R&D e↵ort based

on their expected collaboration network and then propose partners with which to collaborate.

Using data from U.S. manufacturing firms and their collaborative patent submission history, I

estimate the degree of spillover, rivalry e↵ects of product market competition, and the determi-

nants of collaboration partners. These structural parameters enable counterfactual experiments

to illustrate the impact of R&D acceleration policies on firms’ investment and collaboration net-

works, showing that subsidies targeted at firms with high R&D expenditure are more e↵ective

than those that are not.

A crucial feature of this model is indirect spillover from a firm that does not collaborate

directly. For example, assume that there are three firms: A, B, and C. There are two collabora-

tive relationships between A and B and A and C, but not between B and C. Through research

collaboration, firm A benefits from firm B’s knowledge and vice versa. Simultaneously, firm

C can also indirectly benefit from firm B’s knowledge through collaboration with A. Although

firms B and C do not directly collaborate, knowledge can still be transferred through the in-

termediation of A, which is connected to both firms. This indirect spillover is the reason for

the joint endogeneity between R&D investment and collaboration. Firms’ decisions on R&D

investment should be based on the global structure of the collaborative network, considering

the existence of indirect spillovers. If firms maintain a fixed R&D investment, the selection of

their collaboration partners will be strategic because collaborators’ partners can indirectly learn

from their knowledge. Therefore, global collaboration networks and R&D investments depend

on each other.

I use data from Bloom et al. (2013) and Zacchia (2019), which include the account infor-

mation of manufacturing firms in the U.S., the list of scientists who were employed by those

firms, and co-authored patents that scientists applied for. This dataset allowed me to con-

nect firm-level R&D expenditures with the firm a�liations of the scientists involved in each
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research project. By analyzing the applicant information recorded in patents, patents filed

by multiple companies or institutions can be identified and the collaboration network among

these applicants can be observed. The panel data indicate a strong positive correlation between

collaboration intensity and R&D expenditure.

I construct the model of a two-stage game in which firms first choose their R&D e↵ort based

on their expected collaboration network, and then choose partners to collaborate with. The first

stage is based on a Cournot competition game, in which a firm determines its output and R&D

investment. In this model, R&D investment lowers the marginal cost of its own production.

Additionally, I incorporate a spillover structure in which collaborators’ R&D investments con-

tribute to a reduction in marginal cost. To account for the interaction of incentives to change

network structure and R&D investment, I introduce the second stage in which firms can choose

their collaboration partners. This model can be solved using backward induction. In the second

stage, firms select their collaborators based on the decisions made in the first stage. In the

first stage, firms make decisions regarding their R&D investments and output considering the

expected spillovers and the anticipated network structure that will be realized in the second

stage.

I first estimate the second stage and then use the estimated parameters to estimate the

first stage. In the second stage, during which firms choose their collaboration partners, I

employ the method developed by Leung (2015) to estimate the parameters that determine the

network structure in the presence of externalities. Although the model involves externalities,

I use the theoretical results of Comola and Dekel (2022) to restrict the characteristics of the

equilibrium. Once the parameters of the second stage network formation game were estimated,

the parameters that determine output and R&D investment in the first stage were estimated.

I use a spatial autoregression model to address the reflection problem resulting from spillovers

in the profit function.

The estimation results quantify the relative contributions of their own R&D investments

and those of direct and indirect collaborators to the reduction in marginal cost. The degree of

cost reduction from the collaborators’ R&D is 13% relative to the reduction from a firm’s R&D.

Moreover, the e↵ect of a collaborator’s R&D is 4% of that of R&D. These direct and indirect

spillover e↵ects are larger than the estimates in existing literature. I examine whether these

di↵erences arise from an estimation bias resulting from ignoring the endogeneity of network

formation.
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I examine whether these di↵erences come from the estimation bias that results from ignoring

the endogeneity of network formation. As a result, the estimates that capture direct and indirect

spillovers are 8% and 18% larger, respectively, than when I do not consider the second stage

and the network structure is not endogenized. These magnitudes of bias are consistent with the

di↵erences in cost reduction estimates between our model and those in the literature.

Using the estimated model, I conduct a counterfactual analysis of policies that allocate

R&D subsidies. I compare the e�ciency of three allocations; (i) uniform allocation, (ii) al-

location proportional to the extent of existing collaborations a firm originally had, and (iii)

allocation inversely proportional to the number of a firm’s original cooperative relationships.

An examination of how R&D spending can increase depending on how subsidies of the same

total amount are allocated reveals significant di↵erences among the three allocation policies.

The most cost-e↵ective policy is the allocation method (ii). The subsidy policy has also been

shown to significantly increase the number of collaborative research projects, which is a major

factor in promoting R&D. The results suggest that targeting firms that have already a lot of

collaborators makes subsidy allocation e�cient.

This article stands on the literature on knowledge spillovers resulting from individual R&D

e↵orts. Bloom et al. (2013) have separately estimated R&D spillovers and the negative competi-

tion e↵ect that is due to the R&D of product market rivals. While this study is groundbreaking

in that it identifies two e↵ects, it does not analyze the cooperation between individual firms.

Zacchia (2019) studied the interactions between individual inventors from di↵erent companies

that drive knowledge spillover among firms. In his study, in which he estimated the spillover

e↵ects given an exogenous network structure using the micro-data of inventors’ collaboration,

the endogeneity of network formation was not involved in the model. Arora et al. (2021) ex-

amined the relationship between spillover and R&D incentives. They found that the more

sensitive a company is to the use of its research results by other companies, the more it reduces

its share of R&D. My study adds to this literature, which had estimated spillover e↵ects with

these networks as exogenous, by showing that the results are significantly di↵erent when the

networks are treated as endogenous. In addition, this study relates to a developing literature on

collaborations and coauthorship among economics researchers(Kerr, 2008; Akcigit et al., 2018;

Anderson and Richards-Shubik, 2022). However, no studies have simultaneously analyzed the

e↵ectiveness of collaborative research and the determinants of research partners. A two-step

estimation shows how to deal with this problem.
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I also apply findings from the literature on empirical network formation. The fundamental

di�culty in identifying strategic network formation is the existence of multiple equilibria ow-

ing to externalities. Recent studies have developed structural models to address this problem

(Miyauchi, 2016; Mele, 2017; Paula et al., 2018; Sheng, 2020). However, in these studies, the

conditions for identification were often restrictive, or only partial identification was possible.

For example, while Mele (2017) illustrates the network formation game as a potential game

and identifies the parameters’ stationary distribution, his procedure requires at least one of the

externalities to be negative and su�ciently large. This method is not appropriate in this case

because the presence of negative spillover e↵ects cannot be confirmed a priori. Partial iden-

tification is also di�cult because of the limited number of networks in my dataset. However,

Leung (2015) shows that, when data are rationalized by a symmetric equilibrium, the two-step

estimation provides point-identified estimators in a directed network formation game. Comola

and Dekel (2022) extend the methods of Leung (2015) to allow undirected link formation. I

incorporated their method into my two-stage game.

Recent studies have encompassed two strands of the literature: R&D spillovers and strategic

network formation. Dasaratha (2022) describes a theoretical model of innovation in a strate-

gic network formation game with many firms. His model captures the positive and negative

competitive e↵ects of network formation. They found an equilibrium and showed that several

interventions failed to improve welfare. My empirical analysis is consistent with the theoretical

predictions and quantitatively reveals e↵ective interventions. König et al. (2019) and Hsieh

et al. (2022) developed a structural model for the coevolution of networks and behavior of

agents. König et al. (2019) estimate both R&D investment decisions and collaboration net-

work formation. However, their estimation of network structure depends on the history of

collaboration, and the model is independent of R&D investment decisions. As counterfactual

simulations, they rank firms according to the size of spillovers when subsidizing them. Hsieh

et al. (2022) applied the Bayesian double Metropolis–Hastings algorithm to estimate a struc-

tural model for the coevolution of networks and behavior; they estimated the spillover e↵ects

of R&D investment and collaboration decisions in the chemical and pharmaceutical industries.

Their counterfactual analysis revealed key players in the network. In this study, I construct a

two-stage model in which both R&D investment and collaboration decisions are consistent with

profit maximization. The model was estimated using the method described by Leung (2015).

My counterfactual experiment examined the e�ciency of subsidy allocation and changes in the

5



network structure under several allocation scenarios.

The remainder of this paper is organized as follows: Section 2 describes the proposed two-

stage game model. Section 3 describes the data used and summary statistics. Section 4 out-

lines the identification and estimation procedures. Section 5 presents the estimation results

and discusses economic interpretations. Finally, in Section 6, I use the estimated model for a

counterfactual experiment to analyze the e↵ectiveness of R&D subsidy allocations. Section 7

concludes the paper.

2 Theoretical Framework

This section provides a comprehensive description of the theoretical model that combines the

Cournot competition and R&D collaboration considerations. In Section2.1, the R&D collab-

oration relationship is assumed exogenous. Subsequently, this relationship is endogenized in

Section2.2 to accommodate the strategic interactions arising from network formation. The en-

tire game unfolds into two stages: firms first determine their R&D investments and outputs

based on anticipated network structures, and then form the R&D collaboration network.

2.1 Cournot competition

Consider a market comprising a set of firms N = 1, ..., n. Adopting the approach of König et al.

(2019), a Cournot oligopoly framework is employed. Denote the price and quantity of good i

are pi and qi, respectively. Given the potential for the goods to be imperfect substitutes, the

inverse demand function is expressed as:

pi = p̄i � qi � ⇢
nX

j=1

bijqj (1)

Here, p̄i embodies market size variations, while ⇢ signifies the substitutability extent between

products. The coe�cient bij describes the product market closeness of goods i and j.

Firms can reduce their marginal production costs by investing in research and development

(R&D), representing the R&D e↵ort of firm i as ei. The corresponding marginal cost ci can be
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expressed as:

ci = c̄i � '0ei|{z}
own e↵ort

�'1

X

j 6=i

aijtijej

| {z }
direct spillover

�'2

X

j 6=i

X

k 6=i,j

aijajktikek

| {z }
indirect spillover

(2)

Ensure that c̄i is su�ciently large such that ci remains positive for all entities i 2 N . The

R&D collaboration network is depicted by a symmetric adjacency matrix A, with elements aij

assigned a value of 1 if firms i and j are collaborating, and 0 otherwise. tij is the technological

closeness between firm i and j. The spillover e↵ect from the R&D collaboration network on

cost reduction is captured by the parameters '1 and '2.

In this model, we explicitly assume that R&D e↵orts are used for process innovation. How-

ever, we can also capture product innovation with some modifications. In general, product

innovation is characterized the di↵erentiation, which is reflected in p̄i. If we define p̄i =

p̃i � '0ei � '1
P

j 6=i aijtijej � '2
P

j 6=i

P
k 6=i,j aijajktikek, we can capture the e↵ect of product

innovation. On the other hand, since my data does not let us observe whether each R&D e↵ort

aims at process or product innovation, we cannot identify the degree of each e↵ect. Then, my

model only accounts for the impact of process innovation, but due to the linear representation

of price and cost, we also can interpret it as a product innovation e↵ect.

It’s posited that the R&D e↵ort’s associated cost (or the R&D investment) increases with

e↵ort, displaying diminishing returns, specifically 1
2e

2
i .
1 A network formation cost, !ij , is also

introduced, which detracts from a firm’s profit when aij = 1. Consequently, the profit for firm

i is

⇡i = (pi � ci)qi �
1

2
e2i �

X

j

aij!ij (3)

Optimizing with respect to ei and qi yields:

e = '0q (4)

2q = �� ⇢Bq+ '0e+ '1Ae+ '2A2e (5)

Here, � represents the vector p̄i�c̄i, and matricesA, A2, and B symbolize aij⇥tij , aik⇥akj⇥tij ,

1
Since I define the e�ciency of R&D e↵ort using parameters '0,'1 and '2, the relative size of R&D e↵ort

and R&D expenditure does not need specific restriction. Then, R&D expenditure can be standardized in any

way. For simplicity, I specify the level of R&D expenditure by
1
2 .
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and bij , respectively.

There exists a unique Nash equilibrium with the equilibrium R&D e↵ort vector e⇤ given by

e⇤ = µ� �Be⇤ + �1Ae⇤ + �2A2e
⇤ (6)

This equilibrium is viable if the matrix I � �1A � �2A2 + �B exhibits positive definiteness.2

Since e and q corresponds uniquely in equation (4), I focus on e later.

2.2 Network formation

In this section, I examine the endogeneity of the matrices A and A2, which are treated as

exogenous in Section 2.1. Given the structure of our game, the network matrices A and A2

are influenced by e and are hence denoted as Â(e) and Â2(e). The subsequent chapters provide

a detailed exploration of the network formation game, emphasizing the characterization of its

equilibrium.

2.2.1 Setting

Considering that the network formation game occurs after firms have made decisions regarding

their output and R&D investment, these firms will choose collaboration partners based on

others’ R&D investments of others. While firms can observe e and t, I introduce a layer of

imperfect information: firm i remains unaware of the network costs associated with other firms,

symbolized as (!jk)j,k 6=i. The existence of an unobservable component implies that I deal with

a game with imperfect information.

The decisions of firm i can be represented by a vector of binary variables, sij 2 0, 1. A value

of sij = 1 indicates that firm i is proposing collaboration with firm j, and sij = 0 indicates

the absence of such a proposal. The total number of proposals, represented by
P

j sij , is not

constrained.

The benefits of such collaborations for the firms were established in the initial stage. Col-

laboration occurs when the expected benefits surpass the collaboration costs, as dictated by the

2µ =
'0�
2�'2

0
� =

⇢
2�'2

0
,�1 =

'0'1
2�'2

0
,�2 =

'0'2
2�'2

0
. The existence proof for this unique Nash equilibrium mirrors the

methodology employed in König et al. (2019).
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following condition3:

sij =

8
<

:E

0

@ 1tijeiej +  2

X

k 6=i,j

ajktikeiek � !ij | e, t

1

A � 0

9
=

; (7)

Lastly, the network formation cost function is specified as:

!ij = �0 + �1PreLinkij + �2Geoij � ✏ij (8)

Here, PreLinkij denotes a prior collaboration, where �1 captures the costs associated with

initiating a new contract. Similarly, Geoij signals geographical proximity, and �2 quantifies

communication costs. The unobservable factor, ✏ij , represents private information and is de-

rived from a Type-I EV distribution. Although idiosyncratic shocks exist and are universally

distributed, their precise values remain concealed from other firms.

2.2.2 Equilibrium

I examine the stable matching where aij takes the value of 1 if and only if both sij and sji are

1; otherwise, aij equals 0. This relationship can be expressed as aij = sij⇥sji. I introduce X as

a vector capturing the observable characteristics that influence a firm’s actions. This includes

elements such as ei, ti, PreLinki, and Geoi.

Consider �A�i as the matrix representing firm i’s beliefs about other firms’ collaboration.

Here, A�i represents the matrix A excluding the ith row and column. Consequently, i’s expected

marginal benefit from collaboration with j is contingent on both X and �A�i . Given that the

marginal payo↵ function satisfies linearity, separability, and anonymity, firm i’s action with

respect to firm j becomes independent. This can be represented as:

sij = {E[vij(X,A�i; ✓0)|X,�A�i ] + ✏ij � 0} (9)

Here, ✓0 is the vector of true parameters and includes  1, 2,�0,�1, and �2. Additionally,

vij(X,A�i; ✓0) can be derived from (7) and (8).

A belief matrix, �A, can be a Bayesian Nash equilibrium if, for all i, j 2 N , it satisfies the

3 1 =
'1
'0

,  2 =
'2
'0
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subsequent condition :

�Aij = Pr(aij = 1|X,�A) (10)

Furthermore, where �A is an equilibrium belief, the equilibrium network A conforms to:

aij = {E[vij(X,A�i; ✓0)|X,�A�i ] + ✏ij � 0}
| {z }

sij

{E[vji(X,A�j ; ✓0)|X,�A�j ] + ✏ji � 0}
| {z }

sji

(11)

Comola and Dekel (2022) incorporate the symmetric equilibrium condition, which requires

that pairs of agents with matching characteristics exhibit identical ex-ante linking probabilities.

This condition is expressed as follows:

(Xi = Xk and Xj = Xl) or (Xi = Xl and Xj = Xk) ) �Aij = �Akl (12)

The presence of a symmetric equilibrium is verified in Comola and Dekel (2022). While this

condition may appear constraining when all attributes are discrete, it becomes less stringent

when continuous attributes are incorporated. I thus move to an enhanced condition: similar

pairs of agents should have analogous ex-ante linking probabilities. Formally, an equilibrium

�A should satisfy that for all " > 0, there exists � > 0 such that for all pairs ij 6= kl 2 N

||Xij �Xkl|| < � ) |�Aij � �Akl| < " (13)

I then assume that condition (13) is satisfied within the equilibrium. By positing that only

symmetric equilibria are chosen, I can identify within a single network as suggested by (Leung,

2015).

3 Data

In the empirical assessment, I employ data drawn from Zacchia (2019), originally sourced from

Bloom et al. (2013) and Li et al. (2014). This dataset encompasses 736 R&D-intensive firms

from the U.S. stock market, curated from COMPSTAT and categorized under the SIC four-digit

sector. These firms have corresponding entries in the NBER patent dataset, as described in

Hall et al. (2001). The patents are segregated into 426 distinct classes as per the USPTO’s

categorization.
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Bloom et al. (2013) computed the technological proximity of two firms in terms of their

patent allocation using a measure adapted from Ja↵e (1986):

tij =
(TiT 0

j)

(TiT 0
i )

1
2 (TjT 0

j)
1
2

(14)

Here, Ti = (Ti1, Ti2, ..., Ti426) is the vector that gathers Ti⌧ where Ti⌧ signifies the patent pro-

portion of firm i in the technology class ⌧ amidst the 426 classes.

Similarly, product market closeness was measured using SIC and four-digit industry codes.

This measure was calculated as follows:

bij =
(SiS0

j)

(SiS0
i)

1
2 (SjS0

j)
1
2

(15)

where Si = (Si1, Si2, ..., Si597) denotes the vector of Sik. Sik is the share of sales of firm i in

four digit industry k across the 597 classes. In their dataset, tij and bij are discrete variables

that take integer values between zero and 100. In my estimation, I standardize these variables

to the values between zero and one.

In addition, the patent dataset of Li et al. (2014) was combined. This dataset consists of

1315060 patents granted to 565019 scientists with information on which firms they belong to. I

use the co-authorship of jointly filed patents as the connection between scientists and the firms

with which they are associated. Specifically, for two inventors m and n, the link element amnt

takes the value 1 if at time t+ 1 the USPTO has received at least one patent application filed

at any time in the past by both m and n. I associate inventors m and n with firms i and j that

belong to and construct aijt, the link information between firms. 4

Because our model is not dynamic and cannot use panel data, I employed a sample from

1996, when collaboration between firms was most observed in the panel. This year, there were

1146 links between the 461 firms that have positive R&D expenditures.

Table 1 reports the firm-level summary statistics for 1996. On average, one firm had col-

laborative research relationships with 3.2 firms. The measures of technological and product

market closeness are very small, on average, at 0.049 and 0.025, respectively. If I limit the

sample to those who are involved in a collaboration, the overage values become 0.304 and 0.166,

respectively.

Figure 1 illustrates the collaborative networks of the 175 firms in 1996. This figure only

4
The details of this association are provided by Zacchia (2019).
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Table 1. Summary Statistics (1996)

Variable Unit Observations Mean SD Minimum Maximum

Number of Collaborations firm 461 3.8 7.774 0.00 62.00

R&D Expenditure firm 461 0.172 0.638 0.001 8.900

tij (Tech Closeness) pair 106030 0.049 0.036 0.000 0.990

bij (Market Closeness) pair 106030 0.024 0.091 0.000 1.000

tij | aij = 1 pair 876 0.304 0.255 0.000 0.990

bij | aij = 1 pair 876 0.166 0.249 0.000 1.000

The values are measured in 1996 prices in $billion. Standardized between 0 and 1 and discretized

in 0.01 increments. The sample is limited to firms whose R&D expenditure is positive.

Figure 1. Collaborations between firms (1996)

includes firms with more than two collaborations. Companies with small-scale R&D tend to be

located on the periphery, whereas those with large-scale R&D tend to be located in the center

of the network. In addition, companies located at the center of the network are involved in a

number of joint research projects, three or more.

In Table 2, I checked the correlation between collaboration probability and pairwise char-

acteristics which are indicated in the second stage of my model. I regressed the collabora-

tion dummy on tijeiej ,
P

k 6=i,j ajktikeiek, dummy of collaboration in 1995, and the same state

dummy. All four variables show a positive significant correlation with collaboration probability.

In specification (2), I controlled bij . The result does almost not change, and the coe�cient

on bij also shows a positive and significant estimate. This positive correlation between market
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Table 2. Correlation between Collaboration and Firm Characteristics

Variable (1) (2) (3)

Intercept -0.0002 -0.0007 -0.0001

(0.0002) (0.0002) (0.0002)

R&D of partner (t weighted) 0.0122 0.0113 0.0118

(0.0070) (0.0068) (0.0069)

R&D of partner’s partners (t weighted) 0.0015 0.0015 0.0015

(0.0003) (0.0003) (0.0003)

Collaboration in last year 0.7390 0.7374 0.7311

(0.0167) (0.0167) (0.0171)

Same state 0.0033 0.0029 0.0026

(0.0009) (0.0009) (0.0009)

bij 0.0222 0.0206

(0.0054) (0.0054)

Firm characteristics ⇥

Adjusted R2
0.5877 0.5882 0.5882

The sample is 461 firms that hold positive R&D expenditure in the 1996

dataset. In specification (3), I controlled each firm’s stock of R&D, total

assets, total sales, employment, and market value. The robust standard

errors are in parentheses.

competitiveness and collaboration probability is intuitive because firms producing more di↵er-

entiated goods have less incentive to collaborate. I also included the other firm characteristics,

such as stock of R&D, total assets, total sales, employment, and market value. The result is

almost the same as (1) and (2). In addition, adjusted R2 in the baseline model is 0.5877, which

can partially support my assumption of symmetric equilibrium.

4 Estimation

The estimation process initiates with the network formation stage, followed by the estimation

of parameters governing Â and Â2. Subsequently, the parameters a↵ecting the first stage were

estimated.

4.1 Beliefs

Given a symmetric equilibrium, the belief estimation is expressed as

�̂Aij =

P
l,k>l akl · {Xd

ij = Xd
kl}K

⇣
d(Xc

ij ,X
c
kl)

h

⌘

P
l,k>l {Xd

ij = Xd
kl}K

⇣
d(Xc

ij ,X
c
kl)

h

⌘ (16)

where Xd
i and Xc

i represent the discrete and continuous attributes of i, respectively. The

function d(Xc
ij , X

c
kl) signifies the vector of attribute distances between two pairs, with h as the
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bandwidth and K(·) as a kernel function. A proof showcasing that �̂Gij is consistent with �Gij , a

belief in symmetric equilibrium, for all i, j 2 N can be found in Comola and Dekel (2022).

4.2 Network Formation

From the equilibrium condition (11), the likelihood of observing network A is:

L(✓,�A) =
NY

i,j>i

✓
1

1 + exp(�E[vij | ✓,�A])
1

1 + exp(�E[vji | ✓,�A])

◆aij

⇥
✓
1� 1

1 + exp(�E[vij | ✓,�A])
1

1 + exp(�E[vji | ✓,�A])

◆(1�aij)

(17)

Assuming that unobserved utility shocks, ✏ij , are independently sourced from the Gumbel dis-

tribution, parameters are estimated by maximizing the log-likelihood function. The parameter

✓ is then estimated using the deduced symmetric equilibrium beliefs �̂A. Notably, Comola and

Dekel (2022) verifies that the estimator complies with consistency and asymptotic normality.

4.3 First stage

Given the derivations of Â(e) and Â2(e), the equation for e is:

e = µ� �Be+ �1Â(e)e+ �2Â2(e)e+ " (18)

Here, " represents the idiosyncratic shock influencing R&D investments, and is i.i.d., following

the normal distribution N(0,�2). When the matrix ⌦ = I� �1Â(e) � �2Â2(e) + �B is positive

definite, it can be restructured as:

e = ⌦�1(µ+ ") ⇠ N(⌦�1µ,�2⌦0⌦) (19)

Then, employing the spatial lag regression model as per (Arbia, 2014), I derive the log-likelihood

function:

`(µ,', ⇢,�2) = C � n

2
log �2 + log |⌦|� 1

2�2
{⌦e� µ}T {⌦e� µ} (20)

To conclude, by maximizing this likelihood, I estimate three parameters in the model of the

first stage (µ,', ⇢) and the variance of the distribution of the error term (�2).
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5 Results

Table 3. Parameter Estimates: Network Formation

Parameter Symbol Estimates

Direct Synergy  1 0.2776

(0.0458)

Indirect Synergy  2 0.0514

(0.0036)

Cost: Constant �0 3.2451

(0.0420)

Cost: Previous Collaboration �1 -4.5001

(0.1051)

Cost: Same State �2 -0.4623

(0.0969)

Standard errors are in parentheses.

The estimated parameters  1 and  2, as delineated in Table 3, suggest a propensity for

firms to engage in collaborative research with others. This likelihood increases under three pri-

mary conditions: (i) large R&D expenditure by the firm, (ii) significant R&D expenditure by a

prospective collaborating firm, and (iii) close technological field alignment between the firm and

its potential collaborator. Notably, the parameter  2 is 80% smaller than  1, indicating that

while firms do consider the existing collaborators of potential partners, this consideration is less

pronounced, accounting for approximately 20%. The positive estimates of  2 signify that the

benefits derived from indirect learning through a collaborator’s network generally outweigh the

risks associated with knowledge leakage and potential business stealing. Additionally, the sta-

tistically significant positive coe�cients of �1 and �2 imply that a history of prior collaboration

and a shorter physical distance between firms contribute to diminishing the costs associated

with collaboration.

Table 4. Parameter Estimates: First Stage

Parameter Symbol Endogeneous Network Fixed Network

Direct Reflection �1 0.1093 0.1008

(0.0079) (0.0076)

Indirect Reflection �2 0.0159 0.0131

(0.0041) (0.0042)

Competition � 0.0059 0.0070

(0.0035) (0.0037)

Variance of " �2
0.3045 0.4575

(0.0200) (0.0310)

Standard errors are in parentheses.

In the estimation of the first stage, as presented in the first column of Table 3, the co-
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e�cients �1 and �2are estimated to ascertain the extent of reflexivity in the autoregression

model, specified in equation (18). These coe�cients indicate the impact of direct and indirect

collaborations, respectively, on a firm’s R&D expenditure decisions. The results revealed that

a firm’s R&D spending decisions are significantly influenced by the R&D expenditures of its di-

rect collaborators. Echoing findings from the network formation stage, the influence of indirect

collaborative connections is quantitatively less than that of direct collaborations, constituting

15% of the e↵ect size. Furthermore, the coe�cient � is estimated to be positive, suggesting that

R&D expenditures function as strategic substitutes among firms that compete within closely

related product markets. This positive estimation of � indicates a tendency for firms to adjust

their R&D spending in response to the R&D activities of their competitors.

In addition, I examine the estimation bias of utilizing the observable collaboration network

directly instead of relying on the collaboration structure formulated during the network forma-

tion stage. This methodology evaluates the extent of estimation the bias incurred when the

network structure is assumed to be exogenous, thus overlooking the dynamic nature of firms’

incentives to modify their collaborative networks. As illustrated in the second column of Table

4, the findings reveal an underestimation of the reflective impacts of both direct and indirect col-

laborations when the endogenous nature of network formation is not accounted for. Coe�cients

�1 and �2 are found to be lower by 8% and 18%, respectively, under this exogenous assumption.

The influence emanating from competitive interactions is found to be overestimated by 19%.

These comparative analyses underscore the importance of recognizing the endogenous forma-

tion of collaborative networks. Neglecting this aspect leads to a disproportionate emphasis on

the e↵ects of competition, thereby failing to fully capture the underlying incentives driving

collaborative partnerships.

Table 5. Parameter Estimates: Cournot Competition

Parameter Symbol Estimates Calculation

R&D Own E↵ort '0 0.7424

q
2
�1+�2
 1+ 2

/1 + �1+�2
 1+ 2

(0.1159)

R&D Direct Spillover '1 0.2061 '0 1

(0.0380)

R&D Indirect Spillover '2 0.0382 '0 2

(0.0048)

Market Rivalry ⇢ 0.0085 (2� '2
0)�

(0.0000)

Standard errors are in parentheses. Standard errors are calculated by 100

times bootstraps.
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Finally, the parameters estimated in both the first and second stages enable the reconstruc-

tion of the original parameters defining Cournot competition. These estimated parameters are

detailed in Table 5. A critical observation from this analysis is the relative magnitudes of '0

and '1, which suggest that R&D expenditure by collaborators has a 27% e�cient impact in

reducing marginal costs compared to a firm’s own R&D expenditure. This value does not con-

sider the technology di↵erence because it is not weighted by tij . If we weight this e↵ect by the

average value of tij among collaborations and standardize the own e↵ort e�ciency to one, the

average spillover e↵ect is t̄ij ⇥ '1/'0 = 0.084. This degree is larger than existing literature.

For example, IV estimation in König et al. (2019) showed that the degree of direct spillover

e↵ect is 0.058. This di↵erence may depend on whether or not the structural model is used to

remove bias when dealing with the endogenous nature of network structure. Additionally, the

coe�cient '2 indicates that indirect spillovers from a firm’s collaborators’ network can also lead

to reductions in marginal costs, albeit at a lower e�ciency rate of approximately 18% relative to

direct spillovers. The positive coe�cient ⇢ quantifies the degree of competitive intensity within

the Cournot game framework. This positive value of ⇢ highlights the importance of strategic in-

teractions among firms in shaping their R&D investment decisions and their subsequent impact

on market structure and firm behavior.

6 Counterfactual Simulations

Using the estimated parameters, counterfactual simulations can be executed to examine the

variations in R&D investment patterns that may occur under several subsidy regimes. This

subsidy, designed to incentivize R&D activities, is proposed as a per-unit grant for R&D ex-

penditure as follows:

⇡i = (pi � ci)qi �
1

2
e2i + si

1

2
e2i

| {z }
subsidy

�
X

j

aij!ij (21)

where si is the proportion of the subsidies.

Given the estimated parameters and artificially determined si, both the R&D expenditures

and the network structure that will be realized can be estimated. This estimation result can

be obtained as a fixed point by alternatively updating R&D investment and network structure.

This updating process was confirmed to be contraction mapping, at least under the size of the
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subsidy set.

In this analysis, I evaluate three distinct subsidy allocation policies; (i) uniform allocation,

(ii) allocation proportional to the extent of existing collaborations a firm originally had, and (iii)

allocation inversely proportional to the number of a firm’s original cooperative relationships.

The first approach is a uniform allocation, where the subsidy si is consistent across all firms

i 2 N . Second, I explore a policy framework wherein the subsidy percentage increases in

direct proportion to the extent of existing collaborations a firm has in the absence of subsidies.

This approach is based on the hypothesis that subsidizing firms with extensive collaborative

networks can e↵ectively catalyze R&D activities in other firms through large spillover e↵ects.

On the other hand, the third policy proposes an inverse relationship between subsidy allocation

and the number of original cooperative relationships. Under this scheme, firms with fewer

preexisting cooperative relationships receive a higher percentage of subsidies. This approach

aims to stimulate R&D by encouraging new collaborations, especially among firms with limited

partnerships. The rationale behind this is the potential for significant R&D promotion through

the spillover e↵ects arising from new collaborations.

Table 6. Counterfactual: Subsidy for R&D Expenditure

Subsidy Expenditure (i) (ii) (iii)

10
R&D increase 17.30 25.48 12.26

New collaborations 10 32 2

50
R&D increase 98.49 152.82 59.14

New collaborations 135 359 4

100
R&D increase 216.48 333.42 117.40

New collaborations 415 916 11

Expenditure is measured in 1996 prices in billion dollars. I evaluate three

distinct subsidy allocation policies; (i) uniform allocation, (ii) proportional

to the extent of existing collaborations a firm originally has, and (iii) in-

versely proportional to the number of a firm’s original cooperative relation-

ships. There are three patterns of total subsidy expenditure: 10 billion,

50 billion, and 100 billion dollars. R&D increase is the di↵erence in the

total amount of R&D expenditure between original data and counterfac-

tual. New collaborations counts the number of collaborations which exist

in counterfactual but not in the original data.

Table 6 presents the outcomes of various counterfactual experiments wherein hypothetical

subsidy policies are implemented with total allocations of $10 billion, $50 billion, and $100

billion, respectively. This experiment assesses the impact of these subsidy policies on both the

resultant R&D expenditure and the formation of collaborative research networks. Each policy
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is evaluated using two metrics, the increase in total R&D expenditures relative to a no-subsidy

scenario, and the increase in the number of collaborations compared to a no-subsidy situation.

Initially, a uniform subsidy allocation is used as the benchmark. Under this approach, a

subsidy of $10 billion is found to enhance overall corporate R&D spending by $17.3 billion,

with the e�ciency of the subsidy escalating with its size; a $50 billion subsidy boosts R&D

by $98.5 billion, and a $100 billion subsidy results in $216.5 billion increase. Additionally, the

likelihood of initiating new collaborations increases nonlinearly with subsidy size, indicating

that subsidies not only directly increase R&D expenditure but also indirectly foster innovation

on a larger scale through enhanced collaboration.

Among the tested policies, the policy focusing on subsidies to firms with a pre-existing

extensive network of collaborations was the most e↵ective in both of two metrics. In particular,

the number of joint research projects has increased non-linearly with the increase in subsidies.

This result suggests that the number of networks of firms doing large-scale R&D may not have

been e�cient in the baseline situation without subsidies.

Conversely, policies aimed at supporting firms without existing collaboration were found to

be relatively ine↵ective. Although these policies lead to an increase in total R&D expenditures,

they are less successful in fostering new collaborative projects. The number of new joint re-

search initiatives remained significantly lower, between 1% and 6%, compared with the second

policy, uncovering the critical role of grant distribution methods in the e�cacy of promoting

collaborative research.

Figures 2, 3, and 4 graphically describe the results when the total amount of subsidy is 100

billion dollars. Figure 2 shows that allocation (iii) does not indicate a dense network or high

R&D expenditure. Figure 3, which shows the results for subsidy scenario (i), describes a more

dense network structure. Figure 4 illustrates the results of the most e�cient allocation, (ii).

Both the network density and the size of R&D investment are the largest in the three scenarios

in the analysis. Especially, some of the companies in the center of the network have substantial

R&D investments and are collaborating with a great number of companies.

7 Conclusion

This study elucidates the factors influencing R&D investment in competitive markets by focusing

on the endogenous decision-making processes governing interfirm collaboration. The findings
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Figure 2. Subsidy Allocation (iii): More subsidy for firms with less collaborations

from counterfactual analyses suggest that an allocation of subsidies with targeting, primarily

towards firms already engaged in extensive collaborative networks, can e↵ectively stimulate

additional R&D investment and foster further collaboration. This insight emerges from an

analysis that incorporates endogenous alterations within a collaborative research network, a

dimension previously unexplored in the extant literature. The methodologies employed in this

study o↵er a framework for examining the decision-making processes in the presence of network

spillover e↵ects. This approach enables the assessment of various hypothetical policy scenarios,

considering the interdependent nature of behavioral and network changes among agents.
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Figure 3. Subsidy Allocation (i): Unifrom subsidy

Figure 4. Subsidy Allocation (ii): More subsidy for firms with more collaborations
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